Multi-attribute conditional image generation is a challenging problem in computervision. We propose Multi-attribute Pizza Generator (MPG), a conditional Generative Neural Network (GAN) framework for synthesizing images from a trichotomy of attributes: content, view-geometry, and implicit visual style. We design MPG by extending the state-of-the-art StyleGAN2, using a new conditioning technique that guides the intermediate feature maps to learn multi-scale multi-attribute entangled representationsof controlling attributes. Because of the complex nature of the multi-attribute image generation problem, we regularize the image generation by predicting the explicit conditioning attributes (ingredients and view). To synthesize a pizza image with view attributesoutside the range of natural training images, we design a CGI pizza dataset PizzaView using 3D pizza models and employ it to train a view attribute regressor to regularize the generation process, bridging the real and CGI training datasets. To verify the efficacy of MPG, we test it on Pizza10, a carefully annotated multi-ingredient pizza image dataset. MPG can successfully generate photo-realistic pizza images with desired ingredients and view attributes, beyond the range of those observed in real-world training data.
Common image-text joint understanding techniques presume that images and the associated text can universally be characterized by a single implicit model. However, co-occurring images and text can be related in qualitatively different ways, and explicitly modeling it could improve the performance of current joint understanding models. In this paper, we train a Cross-Modal Coherence Modelfor text-to-image retrieval task. Our analysis shows that models trained with image–text coherence relations can retrieve images originally paired with target text more often than coherence-agnostic models. We also show via human evaluation that images retrieved by the proposed coherence-aware model are preferred over a coherence-agnostic baseline by a huge margin. Our findings provide insights into the ways that different modalities communicate and the role of coherence relations in capturing commonsense inferences in text and imagery.
ICPR
Picture-to-amount (pita): Predicting relative ingredient amounts from food images
Increased awareness of the impact of food consumption on health and lifestyle today has given rise to novel data-driven food analysis systems. Although these systems may recognize the ingredients, a detailed analysis of their amounts in the meal, which is paramount for estimating the correct nutrition, is usually ignored. In this paper, we study the novel and challenging problem of predicting the relative amount of each ingredient from a food image. We propose PITA, the Picture-to-Amount deep learning architecture to solve the problem. More specifically, we predict the ingredient amounts using a domain-driven Wasserstein loss from image-to-recipe cross-modal embeddings learned to align the two views of food data. Experiments on a dataset of recipes collected from the Internet show the model generates promising results and improves the baselines on this challenging task. A demo of our system and our data is available at: foodai.cs.rutgers.edu.
2020
Arxiv
MPG: A Multi-ingredient Pizza Image Generator with Conditional StyleGANs
Multilabel conditional image generation is a challenging problem in computer vision. In this work we propose Multi-ingredient Pizza Generator (MPG), a conditional Generative Neural Network (GAN) framework for synthesizing multilabel images. We design MPG based on a state-of-the-art GAN structure called StyleGAN2, in which we develop a new conditioning technique by enforcing intermediate feature maps to learn scalewise label information. Because of the complex nature of the multilabel image generation problem, we also regularize synthetic image by predicting the corresponding ingredients as well as encourage the discriminator to distinguish between matched image and mismatched image. To verify the efficacy of MPG, we test it on Pizza10, which is a carefully annotated multi-ingredient pizza image dataset. MPG can successfully generate photo-realist pizza images with desired ingredients. The framework can be easily extend to other multilabel image generation scenarios.