Food Image Synthesis from Ingredients

Fangda Han, Rutgers University 2nd Workshop on AlxFood IJCAI 2020 1/7/2021

Agenda

- A Food Image Generator based on StackGAN-v2
 - Methodology
 - Results
 - Demo
- A Multi-ingredients Pizza Generator based on StyleGAN2
 - Methodology
 - Results
 - Demo

Introduction

Recipe name: Kung-pao chicken

Ingredients: Chicken (400g); Cucumber (100g); Carrot (100g); Peanut(a few);

Cooking steps:

Cut the chicken into small cubes.
 Wash the carrots and dice them.

3.

Motivation

egg, salt, potato, cheese

Data Augmentation

Gamification

Food Art

Motivation BREAKFAST MENU SALAD arten inner shifter all seperaren ipner deler sit weet, anarteter adorating of, sal munitare date it annt. munitare attatung di, sai Loren ipsan date of arest prosections adaptions of unit YOUR RESTRUCENT NAME YOUR RESTAURANT NAME

Visualize Menu

<u>https://edsource.org/2015/art-appreciation-helps-young-children-learn-to-think-and-express-ideas/77734</u>

ttps://www.fiverr.com/graphixerlk/create-a-professional-restaurant-menu-desig

https://www.forbes.com/sites/lisakocay/2017/08/11/food-wines-best-new-chef-2016-will-open-two-restaurants-in-miami-design-district/?sh=5670d57e3baf

Helps young children learn to think and express ideas*

Design Cuisine

A Food Image Generator based on StackGAN-v2

About StackGAN-v2

- StackGAN-v2 can generate photorealistic images
- Works well on spatially compact objects such as birds and flowers
- Not so good on more complex scenes or objects like food
- Why?
 - More than one object
 - Color diversity
 - Interaction between objects

x256 GAN-1

g. 4: Example results by our StackGANs and GAN-INT-CLS [35] conditioned on text descriptions from Oxford-102 test set (leftmost four olumns) and COCO validation set (rightmost four columns).

A Food Image Generator based on StackGAN-v2

Q1: How to encoder ingredients?

Q2: How to generate image?

Q1 => Attention-based Cross-Modal Association Model

○ ingredient feature□ image feature

Q1 => Attention-based Cross-Modal Association Model

$$\begin{split} V(\mathbf{F}_{\mathbf{p}},\mathbf{F}_{\mathbf{q}}) = & \mathbb{E}_{\hat{p}(\boldsymbol{r}^{+},\boldsymbol{v}^{+}),\hat{p}(\boldsymbol{v}^{-})} \min\left(\left[\cos\left[\boldsymbol{p}^{+},\boldsymbol{q}^{+}\right] - \cos\left[\boldsymbol{p}^{+},\boldsymbol{q}^{-}\right] - \boldsymbol{\varepsilon}\right],0\right) + \\ & \mathbb{E}_{\hat{p}(\boldsymbol{r}^{+},\boldsymbol{v}^{+}),\hat{p}(\boldsymbol{r}^{-})} \min\left(\left[\cos\left[\boldsymbol{p}^{+},\boldsymbol{q}^{+}\right] - \cos\left[\boldsymbol{p}^{-},\boldsymbol{q}^{+}\right] - \boldsymbol{\varepsilon}\right],0\right), \end{split}$$

Q2 => Generative Meal Image Network

Cycle-consistency Constraint

$$\mathcal{L}_{i}^{cycle} = \cos\left[\boldsymbol{q}^{+}, ilde{\boldsymbol{q}}^{+}
ight]$$

$$\mathcal{L}_{G} = \sum_{i=0}^{2} \left\{ \mathcal{L}_{i}^{cond} + \lambda_{uncond} \mathcal{L}_{i}^{uncond} + \lambda_{cycle} \mathcal{L}_{i}^{cycle} \right\} - \lambda_{ca} \mathcal{L}_{ca}$$

Dataset

- Recipe1M dataset [*]
- ~400k recipes with title, **ingredients**, instructions and **images**.
- ~16k ingredients names
 - => reduced to ~4k by frequency
 - => further merged to ~2k by semiautomatic fusing process

[*] Marin, Javier, et al. "Recipe1M: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images." arXiv preprint arXiv:1810.06553 (2018).

Evaluate attention-based association model

		im2recipe			recipe2im				
		MedR↓	R@1↑	R@5↑	R@10↑	MedR↓	R@1↑	R@5↑	R@10↑
1K	attention [5]	-	18	-			50	10 5 1	-
	ours	5.500	0.234	0.503	0.618	5.750	0.230	0.491	0.615
5K	attention [5]	71.000	0.045	0.135	0.202	70.100	0.042	0.133	0.202
	ours	24.000	0.099	0.265	0.364	25.100	0.097	0.259	0.357
10K	attention [5]	-	-	-	- 3	-0	- 1	-	-
	ours	47.700	0.065	0.185	0.267	48.300	0.061	0.178	0.261

Tab. 1: Comparison with attention-based association model for using image as query to retrieve recipe. ' \downarrow ' means the lower the better, ' \uparrow ' means the higher the better, '-' stands for score not reported in [5].

* 1K, 5K, 10K means how many recipes/images we're retrieving from, the larger the more difficult

[5]: Chen, Jing-Jing, et al. "Deep Understanding of Cooking Procedure for Cross-modal Recipe Retrieval."

Evaluate generative meal image network

train/test dataset are 17209/3784 (salad), 9546/2063 (cookie) and 4312/900 (muffin)

		salad	cookie	muffin
TA 1	StackGAN-v2	3.07	4.70	2.60
IS ↑	ours	3.46	2.82	2.94
	real	5.12	5.70	4.20
FID	StackGAN-v2	55.43	106.14	104.73
- 12 V	ours	78.79	87.14	81.13

- Training time: 3~4 days for 300 epochs
- Inception Score (IS): higher score means images that are both meaningful and diverse
- Frechet Inception Distance (FID): Frechet distance between real and synthesized data distributions in feature space

Figure 5: Example results by StackGAN-v2 [27] and our model conditioned on target ingredients, the real images are also shown for reference.

Change Ingredients; Fix Style Vector

Fix Ingredients; Change Style Vector

Fig. 5: Example results from same ingredients with different random vectors. 16 synthesized images are shown for each real image (top-left).

Demo on foodai.cs.rutgers.edu

Figure 1. Generator components overview. Left: Scalewise Label Encoder (*SLE*), each scale has its own layers for encoding. Middle: Mapping Network. **Right**: Synthesis Network, \oplus means concatenation, notice images at different scales are conditioned with different label embedding

Losses

$$\begin{split} \max_{G} &= D(\{\mathbf{t}_i\}, G(\mathbf{x}, \mathbf{z})) + \lambda_c D(G(\mathbf{x}, \mathbf{z})) \\ &+ \lambda_{clf} BCE\left(\mathbf{x}, h(\tilde{\mathbf{y}})\right), \end{split}$$

$$egin{aligned} &\min_{D} = D(\{\mathbf{t}_i\}, G(\mathbf{x}, \mathbf{z})) + \lambda_{uncond} D(G(\mathbf{x}, \mathbf{z})) \ &- D(\{\mathbf{t}_i\}, \mathbf{y}) - \lambda_{uncond} D(\mathbf{y}) \ &+ \lambda_{match} D(\{\mathbf{t}_i\}, ar{\mathbf{y}}) \ &+ \lambda_{natch} D(\{\mathbf{t}_i\}, ar{\mathbf{y}}) \ &+ \lambda_{r1} \left(rac{\partial D(\mathbf{x})}{\partial \, \mathbf{x}} + rac{\partial D(\mathbf{x}, \{\mathbf{t}_i\})}{\partial \, \mathbf{x}}
ight). \end{aligned}$$

Figure 2. Left: Discriminator structure, which contains one branch for conditional output and another branch for unconditional output, notice the label embedding $\{t_i\}$ are reversed to match different scales. Top right: Generator Loss, consisting discriminator loss plus Classification Regularizer (*CR*) loss for fake image. Bottom right: Discriminator Loss, consisting three discriminator losses from fake, real and wrong images. Notice the discriminator is trained to distinguish between (txt, real img) and (txt, wrong img) Table 2. Quantitative comparison of performances between baselines and the proposed multi-ingredient Pizza Generator (*MPG*)

Models	Image Size	FID↓	mAP↑
StackGAN2 [41]	256^2	81.01	0.2001
CookGAN [10]	256^{2}	81.86	0.3084
AttnGAN [40]	256^2	74.47	0.5729
MPG	256^{2}	22.54	0.9946

Figure 7. Qualitative comparison between our model MPG and baselines

Figure 9. Illustration of traversing through the text embedding space and the style noise space. Images in each row are generated with the same text embedding (interpolated between $\{t_i\}_1$ and $\{t_i\}_2$), while images in each column are synthesized with the same style noise (interpolated between z_1 and z_2).

Demo on foodai.cs.rutgers.edu

Q & A

- Han, Fangda, Ricardo Guerrero, and Vladimir Pavlovic. "CookGAN: Meal Image Synthesis from Ingredients." *The IEEE Winter Conference on Applications of Computer Vision*. 2020.
- Han, Fangda, et al. "MPG: A Multi-ingredient Pizza Image Generator with Conditional StyleGANs." *arXiv* preprint arXiv:2012.02821 (2020).